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We study the traffic low in the hydrodynamic limit, where the analogy to fluid flow leads to
the traffic equation in the form of the Navier-Stokes equation. It is shown that the traffic equation
exhibits a variety of behaviors such as homogeneous flow, turbulent behavior, and density waves
with fluctuations in the appropriate regime. In particular, the stability against random fluctuations
and the possibility of 1/f fluctuations in the traffic current are investigated.

PACS number(s): 05.40.+j, 47.54.+r, 89.40.+k, 81.35.4+k

I. INTRODUCTION

Traffic flow on a real road displays a variety of be-
haviors such as clustering and 1/f fluctuations [1]; the
ubiquitous appearance of the latter in many diverse sys-
tems has been a source of mystery [2]. In general, there
have been two distinct approaches that attempt to de-
scribe such collective properties of traffic flow. One is the
cellular automaton approach, in which cars are treated
as distinguishable particles, the roads are expressed as
discrete lattices, and the system evolves in discrete time
steps with given rules [3,4]. On the other hand, it is usu-
ally expected that some essential features of fairly heavy
traffic flow may be obtained by treating a stream of traffic
as a continuum with the density and the current, which
represent the number of cars per unit length and the
number of cars crossing the position per unit time, re-
spectively [5]. In this hydrodynamic description, traffic
flow is described by the continuity equation (conservation
of mass) together with the equation of motion (conserva-
tion of momentum), and the analogy between traffic flow
and fluid flow naturally leads to the traffic equation in
the form [6]

dp o _
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where p(z,t) is the density of cars at position z (on the
road) at time ¢, p is the local pressure given by p = pc2
with ¢Z denoting the effective “temperature” of the sys-
tem or the variance of the velocity distribution [5,6], and
u is the viscosity. On the road drivers control the speed
v and tend to adjust it to the maximal safe value V (p),
which is a phenomenological function of the density. V(p)
depends on the traffic regulations, road conditions, etc.,
and is determined empirically. Thus the last term on
the right-hand side of Eq. (1) represents the relaxation
effects with the relaxation time 7, reflecting the two es-
sential processes: acceleration and slowing down.
Equation (1) indeed exhibits spontaneous formation
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of a cluster of cars in an initially homogeneous traffic
flow, if the density of cars exceeds some critical value [6].
Such a cluster of cars, where the density of cars is high
and the average velocity is low, can move with constant
velocity in the direction or in the opposite direction of
the flow, depending on the parameters and initial con-
ditions. The appearance of the cluster has been shown
to result from the competition between active processes,
which tend to increase the amplitude of nonhomogeneous
perturbations, and the damping processes that suppress
it. The active processes are related to the character of the
function V(p) while the damping processes are connected
with the the diffusion (viscosity) process. It has been fur-
ther shown, via the linear stability analysis, that the ho-
mogeneous state described by Eq. (1) is unstable against
long-wavelength perturbations if [poV'(p0)2 — c2/po] > 0,
where pg is the average density and V'(p) = 8V (p)/dp
[7]. Nevertheless, the interesting possibility of complex
behaviors such as 1/f fluctuations and chaotic flow has
not been addressed to our knowledge.

The purpose of this paper is to examine the possibil-
ity of such complex behaviors in the traffic flow modeled
by Eq. (1), together with their stability against random
fluctuations. For that purpose, we notice that there exist
similar features between the granular flow and the traffic
flow with the cars taking the role of granular particles.
Indeed the similarity between Eq. (1) and the equation
describing the void motion in granular flow under tap-
ping has been pointed out [8]; in the granular flow, where
both the dissipation among the granular particles and the
roughness of the walls of pipes are essential to the for-
mation of density waves, the power spectrum of density
fluctuations has been found to take the form 1/f with
o close to 4/3 [9]. We thus take into account the granu-
lar nature of traffic flow, and investigate in detail its ef-
fects on the traffic flow described by Eq. (1). To consider
the granular nature, we introduce a cutoff in the density,
which corresponds to the maximum density of cars on the
road [6]. The resulting traffic equation exhibits a variety
of interesting behaviors such as homogeneous (laminar)
flow, chaotic flow, and density waves. In particular, 1/f
fluctuations are also found to exist in the traffic flow,
which depends on the shape of the function V' (p) such as
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the existence of a cutoff or a large slope.

This paper consists of four sections: Section II presents
the detailed behavior of the traffic equation with the cut-
off. According to the values of the Lyapunov exponent,
the chaotic phase as well as the density-wave phase is
identified, and typical time evolutions of the density are
shown. The phase diagram in the (po,co) plane exhibits
the homogeneous phase with the laminar flow, the chaotic
phase with the irregular flow, and the density-wave phase
with traveling density waves. The power spectra of the
current fluctuations are also computed, which shows 1/f
fluctuations in the density-wave phase. In contrast, the
chaotic phase does not display 1/f fluctuations as ex-
pected. Section IIT is devoted to the long-wave analysis

of the traffic equation, which reveals that the chaotic be-
|

Bpg:,t) _ _% [i(n+1,t) —j(n—1,8)],

8j(n,t)
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havior arises from the instability in the second-order cor-
rections. Finally, Sec. IV summarizes the main results.

II. PHASE DIAGRAMS AND 1/f
FLUCTUATIONS

We perform numerical integration of the discrete ver-
sion of Eq. (1), introducing the cutoff density p., with
respect to which the density is measured [6]. We fur-
ther rescale the time and the length in units of 7 and
£ = \/puT/pc, respectively, and measure v, V(p), and co
in units of £/7 [6]. For the numerical integration, we dis-
cretize the road into L positions £ = n (in units of ¢),
and write Eq. (1) in the dimensionless form

= =[v(n+ 1,t) + v(n — 1,t) — 2v(n,t)] — % c2p(n+1,t) — p(n — 1,t)] + p(n, t) {V[p(n,t)] — v(n,t)}

ot

——%j(n,t) [v(n+1,t) —v(n —1,t)] - %U(n’t) [(n+1,t) = j(n—1,8)], (2)

where the current is given by j(n,t) = p(n,t)v(n,t).
We choose the initial conditions that the density and
the velocity are perturbed randomly about the homo-
geneous state p = po and v = vo = V(po), which
mimic the realistic situation. Presumably, small den-
sity fluctuations are distributed randomly on the high-
way; we thus assign uniform random numbers dp(z,0)
and év(z,0) in the range [—0.01, 0.01] to each position z,
leading to the initial conditions p(z, 0) = po+dp(x,0) and
v(x,0) = vo + év(x,0). We also take the periodic bound-
ary conditions p(z+L) = p(z) and v(z+L) = v(x), which
correspond to a highway loop of length L. Finally, the
cutoff procedure works in the following way: When the
density p(n) at site n exceeds the cutoff density p. = 1,
then p(n) and v(n) are set equal to p. and zero, respec-
tively, p(n) — p. is added to the density p(n—1) at the
backward neighboring site n—1, and v(n—1) is replaced
by v(n—1)p(n—1)/[p(n—1) + p(n) - pc].

The average relaxation velocity profile V(p) in Eq. (2)
is expected to be a smooth and decreasing function of
p. Here we consider several simple forms for V(p) in-
stead of determining it empirically. One of the specific
(dimensionless) forms considered mainly is given by

_1
1+ Bp*’

where we choose 8 = 4 for simplicity. Other forms that
have been considered include V(p) = e~%?, exp(—ap?),
A{1 + expla(p—b)]} 71, exp(—ap?)(1—p)®(1—p?/2), and
[Aexp(—ap™)+(1—A)](1—p)®. Equation (2) together
with Eq. (3) [or with other forms of V(p)] is integrated

V(p) = ()

by the second-order Runge-Kutta method [10] with the

time interval At = 0.01.

As a result, two qualitatively different states are found
to exist in the unstable region. One is the chaotic state
displaying a positive Lyapunov exponent (A = 0.08 +
0.01) [Fig. 1(a)]. In this chaotic phase, the value of den-
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FIG. 1. Lyapunov exponents for the time evolution of

the density in the system of size L = 400 for (a)
po = 0.35 and ¢o = 0.35; (b) po = 0.45 and co = 0.35.
In (a), the Lyapunov exponent is positive, indicating a chaotic
phase. In contrast, (b) corresponds to the (nonchaotic) den-
sity-wave phase.
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sity does not reach p., and accordingly the cutoff proce-
dure does not operate. The corresponding pattern of the
density evolution is revealed in Fig. 2(a), which displays
the ten stationary-state density profiles taken in the in-
crements of 10* time steps. The other is the density-wave
phase that is affected by the cutoff. It appears as the den-
sity is increased for a given (not too large) value of co,
and displays the negative Lyapunov exponent which ap-
proaches zero, as shown in Fig. 1(b). The corresponding
pattern of the density evolution [Fig. 2(b)], displaying
density profiles in increments of 103 time steps, also ex-
hibits features different from those of the chaotic phase:
While the clusters (high-density regions) in (a) evolve ir-
regularly, (b) displays density waves traveling with small
fluctuations, in the direction opposite to that of the flow.
The phase boundary between the two phases can be ob-
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FIG. 2. Time evolution of the density for (a) po = 0.35
and co = 0.35; (b) po = 0.45 and co = 0.35. The ten curves
(from the bottom to the top) in each of (a) and (b) represent
the stationary-state density profiles taken in the increments
of (a) 10* and (b) 10° time steps, respectively. In (a), the
clusters (high-density regions) evolve irregularly, whereas (b)
displays density waves traveling with small fluctuations, in
the direction opposite to that of the flow.
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tained by computing the values of pp and ¢y, for which
the maximum value of density reaches the cutoff density
Pec, which yields the phase diagram shown in Fig. 3.

We next calculate the power spectrum of traffic cur-
rents, using the fast Fourier transform routine with the
Parzen window and averaging processes [10]. We con-
sider a system of length L = 800, and allow the dynamic
process to evolve for very long time steps. Thus, with
26 214 400 computing time steps, we obtain 131072 data
points, the time series of which is broken into 32 seg-
ments. A representative power spectrum in the density-
wave region of the system of L = 800 is shown in Fig.
4(a), where a peak around f = 300 can be observed. Such
a peak is due to the contribution of the high-density pulse
traveling periodically in the system [Fig. 2(b)]. Apart
from this peak, Fig. 4(a) exhibits the power-law regime,
where the spectrum falls off as 1/f*. Here the length of
the time series of the data sets limits to the low-frequency
range. Nevertheless the power-law behavior can be ob-
served at frequencies as low as f =~ 4. The dashed line
represents the least-square fit to the data between f = 30
and 150, which yields the exponent o = 1.09 + 0.09.
Within the range investigated, the exponent « is found
to be independent of the values of the parameters; the
position of the peak, on the other hand, depends on the
values. To check the size dependence, we have also con-
sidered the systems of L = 400 and 1600: With the same
values of the parameters, these systems yield the expo-
nent o = 1.17 + 0.09 and 1.12 £ 0.07, which apparently
indicates that the power-law behavior is not merely a
finite-size effect. It is thus concluded that the density-
wave phase exhibits 1/f fluctuations, which have been
observed on real highways [1]. In contrast, the chaotic
phase does not display 1/f fluctuations. Figure 4(b)
shows a typical power spectrum in the chaotic phase,
which does not possess the power-law regime at low fre-
quencies. The power-law behavior appears in the rather
restricted range at high frequencies (f > 50), with a
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FIG. 3. Phase diagram of the traffic equation on the
(po, co) plane, showing the homogeneous (laminar) flow, the
chaotic phase, and the density-wave phase. For not too large
co, the amplitude of the cluster grows with po, resulting in
the operation of the cutoff mechanism.
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FIG. 4. Power spectrum of traffic currents at z = 400 in
the system of size L = 800 for co = 0.3 and (a) po = 0.75; (b)
po = 0.3. Case (a) corresponds to the density-wave phase,
and the dashed line represents the least-square fit with the
slope —1.09 £ 0.09. In (b), which corresponds to the chaotic
phase, the spectrum is more or less white.

larger value of the exponent: o = 2.06 + 0.08. Except
for this, the power spectrum apparently displays fluctua-
tions of the white-spectrum type. We have also measured
the power spectrum of density fluctuations in the system
with the same parameters, and obtained o = 1.38 £ 0.08
in the density wave phase and the white spectrum in the

chaotic phase.
Among other forms of V(p) considered,
[Aexp(—ap™)+(1

exp(—ap?)(1-p)*(1-p*/2)  and
—A)](1—p)® with small b, as well as e %? with the cutoff,
J

M.Y.CHOI AND H. Y. LEE 52

1 10 100 1000

10000
f
FIG. 5. Power spectrum of traffic currents at = 400

in the system of size L = 800, with V(p) = [0.8 exp(—4p?)
+0.2)(1-p)°%" for ¢coc = 0.2 and po = 0.75. The
least-square fits represented by the dashed lines have the slope
—1.05 + 0.07.

lead to behaviors largely similar to those displayed by
Eq. (3). The typical power spectrum in the system with
V(p) = [Aexp(—ap™)+(1—A)](1—p)® is shown in Fig. 5
for A=0.8,n =2,a =4, and b = 0.001, which yields the
exponent a = 1.05+ 0.07. On the other hand, the above
forms of V' (p) with large b as well as A{1+exp[a(p—b)]}~?
in general do not lead to 1/f fluctuations. This indicates
that the appearance of density waves and 1/f fluctua-
tions depends on the slope of V(p) at p.. In particu-
lar V(p) approaching zero with a small slope at p. does
not exhibit 1/f fluctuations: Here random fluctuations
eventually destroy the density waves, resulting in chaotic
evolution.

III. LONG-WAVE ANALYSIS

The long-wave analysis has been applied to the traf-
fic equation, which is slightly different from Eq. (1) in
the viscosity term, to demonstrate the existence of soli-
ton solutions [7]. Here the method applied to Eq. (1)
reveals the chaotic behavior arising from the instability.
Following Ref. [7], we set

p(z,t) = po + €2p(ez, €3t),
v(z,t) = vo + €2 (ez, €3t), (4)

where € is a small number, and write Eq. (1) as follows:

X R . X 1
bt + uTV'(p0) Pazat [2V' (o) + V" (po)] Pp= = —eTpo{2M[V'(po)]2pmc +ap+ g { [V'(p0)]? + 200V (po) V" (p)

Po

—c%f”(po)}ﬁ"’} o [T,

5 Vo)

T o), )

where f(p) =1lnp, a = (1/€2){po[V'(p0)]?> — c2f'(po)}, and the subscript denotes the derivative with respect to that

variable.
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For convenience, we put
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3u ~

p=

z = —27V'(po) %,

872 -
t=—I[V’ 2,
m [V'(po)]

27V (po)[2V" (po) + poV"(po)]’3 ’

and, for simplicity, drop the tildes on the new variables #, {, and 5, which leads to Eq. (5) in the form

A " 27 pocx
Pt — Pzzxz — = —€

Pzx + pOﬁzzmz + a(ﬁﬁz)m]

3u
—62 { Azz:n o — zT
27V (00)[2V" (o) + poV" (p0)] =¥~ 27V (00)[2V"(p0) + poV" (po)2” *

with
300[V'(p0)* + 200V (po) V" (po) — c3 " (po)]
V'(p0)[2V"(po) + poV" (po)] '

The solution of Eq. (6) to leading order takes the form
11]

p = 2k?sech®k(z — zo + 4k%t) = u(z, t, k, zo), (7

a

where k is a free parameter. To the order €, we thus have
ij: u((l},t, k,(ﬂo) +6ﬁ1, (8)

where k and z¢ have been assumed to vary with the slow
time variable t; = et. We insert this into the evolution
equation (6), and obtain

bu di
Ok dty

2
= — { TPo AUz + PoUzzzs + a(uu,)z] (9)

where the operator A is defined to be
ap =22 21,
PL= 13t~ 828 a3 | P
Here we have dk/dt; =0 if
e [ V'(po)[2V"(po) + poV" (po)] ]
2u [4[V'(po)]? — TpoV' (o) V" (po) + 63" (po) |’

for which Eq. (9) reads

k2 =

Ou dxg .
Bog 4ty + Ap1 = [

27po

QUge + PoUzeze + a(uuz)z:l .

Multiplying both sides by 8u/8z¢ and integrating over
x, we also get dro/dt; = 0, and obtain the equation of
motion for p,(z,t):

9 . 8% 0, .
&Pl(w,t) = (—9‘;91(2,t) + 6u5;p1(w,t) + 6uspi(z,t)
2
—€ [ Thox Uge + PolUzzza + a(uuz)m] )

(10)

gu'V (PO) ~2 A } (6)

[
which has the asymptotic form for ¢ > 1:

O prant) = 2opa(e,t) (1)
—pi(z,t) = — .
a t P1 ) 33: 3 P1 ’
It is thus obvious that the first-order correction p;(z,t)
does not lead to chaotic behavior.

We next consider the second-order corrections

(12)

which, upon substituting in Eq. (6), yields the equation
of motion for p:

1o} 83 1o} .
I:E - 5[‘5 - G%U pg(x,t)

p=u+epr+ € pa,

- 3p
=6 s — x
P1P1 27V (p0)[2V"(po) + poV"(po)] UggrU
9uV" (po) 2
+ U Ugpy
27V(p0)[2V"(po) + poV" (po)12 ©
_27po

aﬁlmm - poijlwzmm - a(ﬁlﬁlm)z'

Thus the asymptotic behavior of p;(z,t) is described by
the equation
0 83 2T 0

o ~ PN Po .
=P2— 7=pP2=6 - —a
ot P2 53 P2 P1P1z P Plzz

—poﬁlmwwz - a(ﬁlﬁlw)w (13)
together with Eq. (11). From the time evolution of g2,
which is obtained by numerical integration, we measure
the asymptotic value of the Lyapunov exponent and ob-
tain the value A = 1.25 £+ 0.27 for po = ¢co = 0.35.
Thus the Lyapunov exponent associated with the second-
order correction po is positive, and the corresponding
instability induces chaotic behavior. In the original
time scale, this corresponds to the Lyapunov exponent
A= pur/872V'(pg)? = 0.09 % 0.01, which is in reasonable
agreement with the value obtained from Fig. 1(a).

IV. CONCLUSION

‘We have studied the traffic problem in the hydrody-
namic limit, which is described by the Navier-Stokes



5984

equation together with the continuity equation. Partic-
ular emphasis has been paid to the cutoff in the traffic
density, which is introduced to account for the granular
nature of cars. We have computed the Lyapunov expo-
nent associated with the time evolution of the system,
which allows us to identify the chaotic phase and the
density-wave phase. The phase diagram on the (po,co)
plane exhibits the homogeneous phase with the laminar
flow, the chaotic phase with the irregular flow, and the
density-wave phase with traveling density waves, depend-
ing on the form of the average velocity relaxation pro-
file V(p). The power spectra of the current fluctuations
are also computed, and found to display 1/f fluctuations
in the density-wave phase; the latter appears when cars
tend to persist their speed until they reach the cutoff. If
the cars tend to slow down sufficiently before they reach
the cutoff, the system does not display 1/f fluctuations.
Instead the spectrum appears to be white, which is a
characteristic of chaotic behavior. This suggests that the
density-wave phase is not so robust against random fluc-
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tuations; the latter tends to produce chaotic evolution
displaying the white spectrum. Still the chaotic behav-
ior appears rather slowly, as implied by the small value
of the Lyapunov exponent, and the density-wave behav-
ior may seem to persist in the nonasymptotic regime.
Such slow appearance of the chaotic behavior out of the
density-wave behavior has been examined via the long-
wave analysis, which shows that higher-order corrections
to the soliton solution of the traffic equation give rise to
the chaotic behavior.
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